일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 텐서플로우
- pyqt5
- 파이썬
- Detectron2
- yolo
- 프로그래머
- V3
- C언어
- connx
- 이터널리턴
- 언어모델
- TensorFlow
- ChatGPT
- ctypes
- NPY
- 개발자
- 딜러닝
- 호흡분석
- 논문
- CycleGAN
- 게임개발
- 딥러닝
- 논문리뷰
- 욜로
- 헬스케어
- 설치
- 리뷰
- python
- 파워셀
- 언리얼엔진
- Today
- Total
사냥꾼의 IT 노트
TensorFlow를 이용한 YOLO v1 논문 구현 #7 - train.py 본문
이전 글: https://it-the-hunter.tistory.com/34
train.py
목표: 모델 class를 인스턴스로 선언해 for 루프를 돌면서, gradient descet를 수행하며 파라미터를 업데이트
필요한 모듈, 라이브러리 import
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
import os
import random
from absl import flags
from absl import app
from loss import yolo_loss
from model import YOLOv1
from dataset import process_each_ground_truth
from utils import draw_bounding_box_and_label_info, generate_color, find_max_confidence_bounding_box, yolo_format_to_bounding_box_dict
flags는 tensorflow에서 제공하는 객체로, 고정값으로 되어있는 데이터를 쉽게 가져올 수 있지만 실행 시 유동적으로 변경도 가능한 장점이 있다.
flags.DEFINE_string('checkpoint_path', default='saved_model', help='path to a directory to save model checkpoints during training')
flags.DEFINE_integer('save_checkpoint_steps', default=50, help='period at which checkpoints are saved (defaults to every 50 steps)')
flags.DEFINE_string('tensorboard_log_path', default='tensorboard_log', help='path to a directory to save tensorboard log')
flags.DEFINE_integer('validation_steps', default=50, help='period at which test prediction result and save image')
flags.DEFINE_integer('num_epochs', default=135, help='training epochs') # original paper : 135 epoch
flags.DEFINE_float('init_learning_rate', default=0.0001, help='initial learning rate') # original paper : 0.001 (1epoch) -> 0.01 (75epoch) -> 0.001 (30epoch) -> 0.0001 (30epoch)
flags.DEFINE_float('lr_decay_rate', default=0.5, help='decay rate for the learning rate')
flags.DEFINE_integer('lr_decay_steps', default=2000, help='number of steps after which the learning rate is decayed by decay rate')
flags.DEFINE_integer('num_visualize_image', default=8, help='number of visualize image for validation')
FLAGS = flags.FLAGS
위 코드에서는 epoch의 default값이 135로 설정되어 있는데, 다음과 같이 실행할 때 유동적으로 설정이 가능하다.
python train.py --num_epoch=150
상세 코드
#cat label 설정
cat_label_dict = {
0: "cat"
}
cat_class_to_label_dict = {v: k for k, v in cat_label_dict.items()}
사람이 이해할 수 있는 "cat"으로 label해주기 위한 코드. 우리가 사용할 데이터셋은 PASCAL 데이터셋인데, 이중에서 cat 데이터셋을 가져와 train 시켜줄 것이다.
#각 변수 설정
batch_size = 24 # original paper : 64
input_width = 224 # original paper : 448
input_height = 224 # original paper : 448
cell_size = 7
num_classes = 1 # original paper : 20
boxes_per_cell = 2
#drawing을 위한 색 설정
color_list = generate_color(num_classes)
#loss function 계수 설정
coord_scale = 10 # original paper : 5
class_scale = 0.1 # original paper : 1
object_scale = 1
noobject_scale = 0.5
각 함수별로 필요한 인자와 변수 설정이다.
original paper는 원본 논문의 값이며, 필자는 좀 더 계산을 편하게 하기 위해 위와 같이 설정해주었다.
#pascal voc2007/voc2012 가져오기
# notice : voc2007 train data(=2,501 images) for test & voc2007 test data(=4,952 images) for training
voc2007_test_split_data = tfds.load("voc/2007", split=tfds.Split.TEST, batch_size=1)
voc2012_train_split_data = tfds.load("voc/2012", split=tfds.Split.TRAIN, batch_size=1)
voc2012_validation_split_data = tfds.load("voc/2012", split=tfds.Split.VALIDATION, batch_size=1)
train_data = voc2007_test_split_data.concatenate(voc2012_train_split_data).concatenate(voc2012_validation_split_data)
#validation data 설정
voc2007_validation_split_data = tfds.load("voc/2007", split=tfds.Split.VALIDATION, batch_size=1)
validation_data = voc2007_validation_split_data
위에서 말했듯이 PASCAL 데이터셋을 사용할 것이다. 이를 가져오기 위한 코드이다. 2007 버전의 데이터셋을 train dataset으로, 2012버전의 데이터셋을 validation datasets으로 사용한다.
#label 7 : cat
# Reference : https://stackoverflow.com/questions/55731774/filter-dataset-to-get-just-images-from-specific-class
def predicate(x, allowed_labels=tf.constant([7.0])):
label = x['objects']['label']
isallowed = tf.equal(allowed_labels, tf.cast(label, tf.float32))
reduced = tf.reduce_sum(tf.cast(isallowed, tf.float32))
return tf.greater(reduced, tf.constant(0.))
train_data = train_data.filter(predicate)
train_data = train_data.padded_batch(batch_size)
validation_data = validation_data.filter(predicate)
validation_data = validation_data.padded_batch(batch_size)
필자가 사용할 labe은 cat 이다. 훈련 데이터와 validation 데이터를 위와 같이 설정해주었다.
def reshape_yolo_preds(preds):
#flatten vector -> cell_size x cell_size x (num_classes + 5 * boxes_per_cell)
return tf.reshape(preds, [tf.shape(preds)[0], cell_size, cell_size, num_classes + 5 * boxes_per_cell])
YOLO 모델의 최종 output은 S x S x (5 * B + C) (5 : x, y, w, h, confidence)이다. 이를 계산하기 위해 코드를 입력하고, flatten 된 객체를 cell * cell 로 reshape 해준다.
def calculate_loss(model, batch_image, batch_bbox, batch_labels):
total_loss = 0.0
coord_loss = 0.0
object_loss = 0.0
noobject_loss = 0.0
class_loss = 0.0
for batch_index in range(batch_image.shape[0]):
image, labels, object_num = process_each_ground_truth(batch_image[batch_index], batch_bbox[batch_index], batch_labels[batch_index], input_width, input_height)
image = tf.expand_dims(image, axis=0)
predict = model(image)
predict = reshape_yolo_preds(predict)
for object_num_index in range(object_num):
each_object_total_loss, each_object_coord_loss, each_object_object_loss, each_object_noobject_loss, each_object_class_loss = yolo_loss(predict[0],
labels,
object_num_index,
num_classes,
boxes_per_cell,
cell_size,
input_width,
input_height,
coord_scale,
object_scale,
noobject_scale,
class_scale
)
total_loss = total_loss + each_object_total_loss
coord_loss = coord_loss + each_object_coord_loss
object_loss = object_loss + each_object_object_loss
noobject_loss = noobject_loss + each_object_noobject_loss
class_loss = class_loss + each_object_class_loss
return total_loss, coord_loss, object_loss, noobject_loss, class_loss
모델, batch image, batch bounding box, batch label을 loss 계산하기 위한 함수 정의다. 총 loss 값을 의미하는 total_loss 변수를 생성하고 total_loss, 좌표를 뜻하는 coord_loss, 오브젝트를 뜻하는 object_loss, 오브젝트가 없는 것을 뜻하는 noobject_loss, 마지막으로 class_loss 값들을 return해준다.
def train_step(optimizer, model, batch_image, batch_bbox, batch_labels):
with tf.GradientTape() as tape:
total_loss, coord_loss, object_loss, noobject_loss, class_loss = calculate_loss(model, batch_image, batch_bbox, batch_labels)
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return total_loss, coord_loss, object_loss, noobject_loss, class_loss
실제 gradient를 실행하는 함수이다. train_step이 한번 호출될 때마다 YOLO v1 모델의 파라미터가 데이터셋의 오브젝트를 잘 검출할 수 있는 방향의 gradient로 진행된다.
def save_validation_result(model, ckpt, validation_summary_writer, num_visualize_image):
total_validation_total_loss = 0.0
total_validation_coord_loss = 0.0
total_validation_object_loss = 0.0
total_validation_noobject_loss = 0.0
total_validation_class_loss = 0.0
for iter, features in enumerate(validation_data):
batch_validation_image = features['image']
batch_validation_bbox = features['objects']['bbox']
batch_validation_labels = features['objects']['label']
batch_validation_image = tf.squeeze(batch_validation_image, axis=1)
batch_validation_bbox = tf.squeeze(batch_validation_bbox, axis=1)
batch_validation_labels = tf.squeeze(batch_validation_labels, axis=1)
validation_total_loss, validation_coord_loss, validation_object_loss, validation_noobject_loss, validation_class_loss = calculate_loss(model, batch_validation_image, batch_validation_bbox, batch_validation_labels)
total_validation_total_loss = total_validation_total_loss + validation_total_loss
total_validation_coord_loss = total_validation_coord_loss + validation_coord_loss
total_validation_object_loss = total_validation_object_loss + validation_object_loss
total_validation_noobject_loss = total_validation_noobject_loss + validation_noobject_loss
total_validation_class_loss = total_validation_class_loss + validation_class_loss
#validation tensorboard log 저장
with validation_summary_writer.as_default():
tf.summary.scalar('total_validation_total_loss', total_validation_total_loss, step=int(ckpt.step))
tf.summary.scalar('total_validation_coord_loss', total_validation_coord_loss, step=int(ckpt.step))
tf.summary.scalar('total_validation_object_loss ', total_validation_object_loss, step=int(ckpt.step))
tf.summary.scalar('total_validation_noobject_loss ', total_validation_noobject_loss, step=int(ckpt.step))
tf.summary.scalar('total_validation_class_loss ', total_validation_class_loss, step=int(ckpt.step))
# validation test image 저장
for validation_image_index in range(num_visualize_image):
random_idx = random.randint(0, batch_validation_image.shape[0] - 1)
image, labels, object_num = process_each_ground_truth(batch_validation_image[random_idx], batch_validation_bbox[random_idx],
batch_validation_labels[random_idx], input_width, input_height)
drawing_image = image
image = tf.expand_dims(image, axis=0)
predict = model(image)
predict = reshape_yolo_preds(predict)
#예측값 parsing
predict_boxes = predict[0, :, :, num_classes + boxes_per_cell:]
predict_boxes = tf.reshape(predict_boxes, [cell_size, cell_size, boxes_per_cell, 4])
confidence_boxes = predict[0, :, :, num_classes:num_classes + boxes_per_cell]
confidence_boxes = tf.reshape(confidence_boxes, [cell_size, cell_size, boxes_per_cell, 1])
class_prediction = predict[0, :, :, 0:num_classes]
class_prediction = tf.argmax(class_prediction, axis=2)
#예측 영역(bounding box) 리스트 생성
bounding_box_info_list = []
for i in range(cell_size):
for j in range(cell_size):
for k in range(boxes_per_cell):
pred_xcenter = predict_boxes[i][j][k][0]
pred_ycenter = predict_boxes[i][j][k][1]
pred_box_w = tf.minimum(input_width * 1.0, tf.maximum(0.0, predict_boxes[i][j][k][2]))
pred_box_h = tf.minimum(input_height * 1.0, tf.maximum(0.0, predict_boxes[i][j][k][3]))
pred_class_name = cat_label_dict[class_prediction[i][j].numpy()]
pred_confidence = confidence_boxes[i][j][k].numpy()[0]
# add bounding box dict list
bounding_box_info_list.append(yolo_format_to_bounding_box_dict(pred_xcenter, pred_ycenter, pred_box_w, pred_box_h, pred_class_name, pred_confidence))
#정답 영역(bounding box) 리스트 생성
ground_truth_bounding_box_info_list = []
for each_object_num in range(object_num):
labels = np.array(labels)
labels = labels.astype('float32')
label = labels[each_object_num, :]
xcenter = label[0]
ycenter = label[1]
box_w = label[2]
box_h = label[3]
class_label = label[4]
# label 7 : cat
# add ground-turth bounding box dict list
if class_label == 7:
ground_truth_bounding_box_info_list.append(
yolo_format_to_bounding_box_dict(xcenter, ycenter, box_w, box_h, 'cat', 1.0))
ground_truth_drawing_image = drawing_image.copy()
#정답 이미지 drawing
for ground_truth_bounding_box_info in ground_truth_bounding_box_info_list:
draw_bounding_box_and_label_info(
ground_truth_drawing_image,
ground_truth_bounding_box_info['left'],
ground_truth_bounding_box_info['top'],
ground_truth_bounding_box_info['right'],
ground_truth_bounding_box_info['bottom'],
ground_truth_bounding_box_info['class_name'],
ground_truth_bounding_box_info['confidence'],
color_list[cat_class_to_label_dict[ground_truth_bounding_box_info['class_name']]]
)
#confidence 값이 최대인 box 찾기
max_confidence_bounding_box = find_max_confidence_bounding_box(bounding_box_info_list)
#예측값 그리기
draw_bounding_box_and_label_info(
drawing_image,
max_confidence_bounding_box['left'],
max_confidence_bounding_box['top'],
max_confidence_bounding_box['right'],
max_confidence_bounding_box['bottom'],
max_confidence_bounding_box['class_name'],
max_confidence_bounding_box['confidence'],
color_list[cat_class_to_label_dict[max_confidence_bounding_box['class_name']]]
)
#왼: 정답 영역/오: 예측 영역으로 box 설정
drawing_image = np.concatenate((ground_truth_drawing_image, drawing_image), axis=1)
drawing_image = drawing_image / 255
drawing_image = tf.expand_dims(drawing_image, axis=0)
#tensorboard log 저장
with validation_summary_writer.as_default():
tf.summary.image('validation_image_'+str(validation_image_index), drawing_image, step=int(ckpt.step))
전체 validation 데이터를 가져와 validation 데이터셋과 YOLO v1 모델이 예측한 데이터셋을 비교하는 함수다. validation 전체 데이터셋의 loss 값을 어느정도 보여주고, 오브젝트가 잘 검출되는지 확인하기 위해 total_validation_loss 등의 변수들에 할당을 해준다.
이후 각 영역들에 대한 예측값을 시각화하며 tensorboar_log로 저장하기까지가 위 코드의 내용이다.
def main(_):
#learning rate decay 설정
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
FLAGS.init_learning_rate,
decay_steps=FLAGS.lr_decay_steps,
decay_rate=FLAGS.lr_decay_rate,
staircase=True)
#optimizer 설정
optimizer = tf.optimizers.Adam(lr_schedule) # original paper : SGD with momentum 0.9, decay 0.0005
#체크포인트 경로가 존재한다면 ...
if not os.path.exists(FLAGS.checkpoint_path):
os.mkdir(FLAGS.checkpoint_path)
#YOLO 모델 생성
YOLOv1_model = YOLOv1(input_height, input_width, cell_size, boxes_per_cell, num_classes)
#체크포인트 manager 설정
ckpt = tf.train.Checkpoint(step=tf.Variable(0), model=YOLOv1_model)
ckpt_manager = tf.train.CheckpointManager(ckpt,
directory=FLAGS.checkpoint_path,
max_to_keep=None)
latest_ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
#마지막 체크포인트 저장
if latest_ckpt:
ckpt.restore(latest_ckpt)
print('global_step : {}, checkpoint is restored!'.format(int(ckpt.step)))
#tensorboard log 설정
train_summary_writer = tf.summary.create_file_writer(FLAGS.tensorboard_log_path + '/train')
validation_summary_writer = tf.summary.create_file_writer(FLAGS.tensorboard_log_path + '/validation')
for epoch in range(FLAGS.num_epochs):
num_batch = len(list(train_data))
for iter, features in enumerate(train_data):
batch_image = features['image']
batch_bbox = features['objects']['bbox']
batch_labels = features['objects']['label']
batch_image = tf.squeeze(batch_image, axis=1)
batch_bbox = tf.squeeze(batch_bbox, axis=1)
batch_labels = tf.squeeze(batch_labels, axis=1)
#최적화 및 loss 함수 실행
total_loss, coord_loss, object_loss, noobject_loss, class_loss = train_step(optimizer, YOLOv1_model, batch_image, batch_bbox, batch_labels)
#실행 log 출력
print("Epoch: %d, Iter: %d/%d, Loss: %f" % ((epoch+1), (iter+1), num_batch, total_loss.numpy()))
#tensorboard log 저장
with train_summary_writer.as_default():
tf.summary.scalar('learning_rate ', optimizer.lr(ckpt.step).numpy(), step=int(ckpt.step))
tf.summary.scalar('total_loss', total_loss, step=int(ckpt.step))
tf.summary.scalar('coord_loss', coord_loss, step=int(ckpt.step))
tf.summary.scalar('object_loss ', object_loss, step=int(ckpt.step))
tf.summary.scalar('noobject_loss ', noobject_loss, step=int(ckpt.step))
tf.summary.scalar('class_loss ', class_loss, step=int(ckpt.step))
#체크포인트 저장
if ckpt.step % FLAGS.save_checkpoint_steps == 0:
ckpt_manager.save(checkpoint_number=ckpt.step)
print('global_step : {}, checkpoint is saved!'.format(int(ckpt.step)))
ckpt.step.assign_add(1)
# occasionally check validation data and save tensorboard log
if iter % FLAGS.validation_steps == 0:
save_validation_result(YOLOv1_model, ckpt, validation_summary_writer, FLAGS.num_visualize_image)
if __name__ == '__main__':
app.run(main)
main 함수다. main 함수의 로직은 다음과 같다.
- tensoflow api에서 learning rate decay를 호출한다.
- 체크포인트 path에 중간 파라미터를 저장한다.
- 앞서 생성했던 YOLO v1 클래스를 인스턴스로 설정한다.
- YOLO v1 모델의 중간 파라미터를 계속 저장하기 위한 체크포인트 manager를 설정한다.
- tensorboatd_log를 저장하기 위한 summary_writer를 생성한다.
'YOLO' 카테고리의 다른 글
TensorFlow를 이용한 YOLO v1 논문 구현 #9 - 최종 실행 및 결과 확인 (0) | 2022.07.08 |
---|---|
TensorFlow를 이용한 YOLO v1 논문 구현 #8 - evaluate.py (0) | 2022.07.08 |
TensorFlow를 이용한 YOLO v1 논문 구현 #6 - model.py (0) | 2022.07.08 |
TensorFlow를 이용한 YOLO v1 논문 구현 #5 - utils.py (0) | 2022.07.08 |
TensorFlow를 이용한 YOLO v1 논문 구현 #4 - datasets.py (0) | 2022.07.08 |